Vinculin activation is necessary for complete talin binding.
نویسندگان
چکیده
Focal adhesions are critical to a number of cellular processes that involve mechanotransduction and mechanical interaction with the cellular environment. The growth and strengthening of these focal adhesions is dependent on the interaction between talin and vinculin. This study investigates said interaction and how vinculin activation influences it. Using molecular dynamics, the interaction between talin's vinculin binding site (VBS) and vinculin's domain 1 (D1) is simulated both before and after vinculin activation. The simulations of VBS binding to vinculin before activation suggest the proximity of the vinculin tail to D1 prevents helical movement in D1 and thus prevents binding of VBS. In contrast, interaction of VBS with activated vinculin shows the possibility of complete VBS insertion into D1. In the simulations of both activated and autoinhibited vinculin where VBS fails to fully bind, VBS demonstrates significant hydrophobic interaction with surface residues in D1. These interactions link VBS to D1 even without its proper insertion into the hydrophobic core. Together these simulations suggest VBS binds to vinculin with the following mechanism: 1), VBS links to D1 via surface hydrophobic interactions; 2), vinculin undergoes activation and D1 is moved away from the vinculin tail; 3), helices in D1 undergo conformational change to allow VBS binding; and 4), VBS inserts itself into the hydrophobic core of D1.
منابع مشابه
Activation of vinculin induced by cholinergic stimulation regulates contraction of tracheal smooth muscle tissue.
Vinculin localizes to membrane adhesion junctions where it links actin filaments to the extracellular matrix by binding to the integrin-binding protein talin at its head domain (Vh) and to actin filaments at its tail domain (Vt). Vinculin can assume an inactive (closed) conformation in which Vh and Vt bind to each other, masking the binding sites for actin and talin, and an active (open) confor...
متن کاملA molecular dynamics investigation of vinculin activation.
Vinculin activation plays a critical role in focal adhesion initiation and formation. In its native state, vinculin is in an autoinhibitory conformation in which domain 1 prevents interaction of the vinculin tail domain with actin by steric hindrance. Once activated, vinculin is able to interact with both actin and talin. Several hypotheses have been put forth addressing the mechanisms of vincu...
متن کاملTwo modes of integrin activation form a binary molecular switch in adhesion maturation
Talin-mediated integrin activation drives integrin-based adhesions. Here we examine the roles of two proteins that induce talin-integrin interactions--vinculin and Rap1-GTP-interacting adaptor molecule (RIAM)--in the formation and maturation of integrin-based adhesions. RIAM-containing adhesions are primarily in the lamellipodium; RIAM is subsequently reduced in mature focal adhesions due to di...
متن کاملIntegrin connections to the cytoskeleton through talin and vinculin.
Integrins are alphabeta heterodimeric receptors that mediate attachment of cells to the extracellular matrix and therefore play important roles in cell adhesion, migration, proliferation and survival. Among the cytoskeletal proteins that interact directly with the beta-chain cytoplasmic domain, talin has emerged as playing a critical role in integrin activation and linkage to the actin cytoskel...
متن کاملMechanical activation of vinculin binding to talin locks talin in an unfolded conformation
The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2011